If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+10q+3=0
a = 1; b = 10; c = +3;
Δ = b2-4ac
Δ = 102-4·1·3
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{22}}{2*1}=\frac{-10-2\sqrt{22}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{22}}{2*1}=\frac{-10+2\sqrt{22}}{2} $
| 2.17=(1.6-x)/x | | (11+x)+7=-2x | | 6x-3+4+x+7=180 | | 9a-11=-109 | | w/3+2=12 | | 5a/6-7/12+3a/4=-2-1/6 | | -(3y-7)=28 | | 13x-16=90 | | 0.8x+1.2=1.2 | | x3+3x=41. | | 2q=7.74 | | 16x-44=-28 | | 3.75=n-5 | | y=60÷5 | | 4x-4=-97 | | z2=2.5 | | x=$49.95+$3.75 | | -2(u+7)=7u-32 | | 4x-5-5=97 | | 5x−2+x=9+3x+10 | | (x+10)/(x^2-2)=4/x | | −2x−6=2x+6 | | g+8=18 | | h-1.4=1.1 | | -5x+3(x+3)=23 | | 12/16=x/18 | | 1/5x+5.34=2.2x+1.54 | | 180+25+x=90 | | z=29.75+59.8 | | 6c-c+15-10=10 | | 5/9z=35 | | 5(-7x=3)=-90 |